skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ai, Xiaocong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This Letter presents the measurement of the energy-dependent neutrino-nucleon cross section in tungsten and the differential flux of muon neutrinos and antineutrinos. The analysis is performed using proton-proton collision data at a center-of-mass energy of 13.6 TeV and corresponding to an integrated luminosity of ( 65.6 ± 1.4 ) fb 1 . Using the active electronic components of the FASER detector, 338.1 ± 21.0 charged current muon neutrino interaction events are identified, with backgrounds from other processes subtracted. We unfold the neutrino events into a fiducial volume corresponding to the sensitive regions of the FASER detector and interpret the results in two ways: (i) we use the expected neutrino flux to measure the cross section, and (ii) we use the predicted cross section to measure the neutrino flux. Both results are presented in six bins of neutrino energy, achieving the first differential measurement in the TeV range. The observed distributions align with standard model predictions. Using this differential data, we extract the contributions of neutrinos from pion and kaon decays. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Abstract Computing centres, including those used to process High-Energy Physics data and simulations, are increasingly providing significant fractions of their computing resources through hardware architectures other than x86 CPUs, with GPUs being a common alternative. GPUs can provide excellent computational performance at a good price point for tasks that can be suitably parallelized. Charged particle (track) reconstruction is a computationally expensive component of HEP data reconstruction, and thus needs to use available resources in an efficient way. In this paper, an implementation of Kalman filter-based track fitting using CUDA and running on GPUs is presented. This utilizes the ACTS (A Common Tracking Software) toolkit; an open source and experiment-independent toolkit for track reconstruction. The implementation details and parallelization approach are described, along with the specific challenges for such an implementation. Detailed performance benchmarking results are discussed, which show encouraging performance gains over a CPU-based implementation for representative configurations. Finally, a perspective on the challenges and future directions for these studies is outlined. These include more complex and realistic scenarios which can be studied, and anticipated developments to software frameworks and standards which may open up possibilities for greater flexibility and improved performance. 
    more » « less
  3. A<sc>bstract</sc> The first FASER search for a light, long-lived particle decaying into a pair of photons is reported. The search uses LHC proton-proton collision data at$$ \sqrt{s} $$ s = 13.6 TeV collected in 2022 and 2023, corresponding to an integrated luminosity of 57.7 fb−1. A model with axion-like particles (ALPs) dominantly coupled to weak gauge bosons is the primary target. Signal events are characterised by high-energy deposits in the electromagnetic calorimeter and no signal in the veto scintillators. One event is observed, compared to a background expectation of 0.44 ± 0.39 events, which is entirely dominated by neutrino interactions. World-leading constraints on ALPs are obtained for masses up to 300 MeV and couplings to the Standard Model W gauge boson,gaWW, around 10−4GeV−1, testing a previously unexplored region of parameter space. Other new particle models that lead to the same experimental signature, including ALPs coupled to gluons or photons, U(1)Bgauge bosons, up-philic scalars, and a Type-I two-Higgs doublet model, are also considered for interpretation, and new constraints on previously viable parameter space are presented in this paper. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Abstract The reconstruction of the trajectories of charged particles, or track reconstruction, is a key computational challenge for particle and nuclear physics experiments. While the tuning of track reconstruction algorithms can depend strongly on details of the detector geometry, the algorithms currently in use by experiments share many common features. At the same time, the intense environment of the High-Luminosity LHC accelerator and other future experiments is expected to put even greater computational stress on track reconstruction software, motivating the development of more performant algorithms. We present here A Common Tracking Software (ACTS) toolkit, which draws on the experience with track reconstruction algorithms in the ATLAS experiment and presents them in an experiment-independent and framework-independent toolkit. It provides a set of high-level track reconstruction tools which are agnostic to the details of the detection technologies and magnetic field configuration and tested for strict thread-safety to support multi-threaded event processing. We discuss the conceptual design and technical implementation of ACTS, selected applications and performance of ACTS, and the lessons learned. 
    more » « less
  5. Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules.During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector.Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2.It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%.Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules. 
    more » « less